Check for updates

Blood 142 (2023) 6261-6263

The 65th ASH Annual Meeting Abstracts

ONLINE PUBLICATION ONLY

627.AGGRESSIVE LYMPHOMAS: CLINICAL AND EPIDEMIOLOGICAL

Clinical Characteristics and Outcomes of Elderly Patients with Stage I Diffuse Large B-Cell Lymphoma: A Study By Jiangsu Cooperative Lymphoma Group (JCLG)

Wenyu Shi, MD PhD¹, Yi Xia², Yongle Li², Jiahao Zhou², Jing He¹, Weiying Gu³, Bingzong Li, MDPhD⁴, Tao Jia⁵, Tingxun Lu⁶, Ping Liu, MDPhD⁷, Yue-Xin Cheng⁸, Yuqing Miao, MD⁹, Xiaoyan Xie¹⁰, Yunping Zhang¹¹, Xuzhang Lu¹², Chunling Wang, MD¹³, Min Xu, PhD¹⁴, Jinning Shi¹⁵, Weifeng Chen¹⁶, Wanchuan Zhuang, MD¹⁷, Zhen Qian¹⁸, Haiwen Ni, MD PhD¹⁹, Yifei Chen²⁰, Jianyong Li, MD²¹

¹Affiliated Hospital of Nantong University, Nantong, China

- ²The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- ³Department of Hematology, Changzhou First People's Hospital, Changzhou, China
- ⁴The Second Affiliated Hospital of Soochow University, Suzhou, China

⁵The First People's Hospital of Lianyungang, Lianyungang, China

- ⁶Affiliated hospital of Jiangnan university, Wuxi, China
- ⁷ The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, CHN
- ⁸Department of Hematology, Yancheng No. 1 People's Hospital, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China, China
- ⁹Yancheng First People's Hospital, Yancheng, China
- ¹⁰Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- ¹¹The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
- ¹²Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, China
- ¹³Department of Hematology, Huai'an First People's Hospital, Huai'an, China
- ¹⁴Zhangjiagang First Affiliated Hospital of Soochow University, Zhangjiagang, China
- ¹⁵The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- ¹⁶The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
- ¹⁷ The Second People's Hospital of Lianyungang, Lianyungang, China
- ¹⁸Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
- ¹⁹ The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
- ²⁰ Jiangdu People's Hospital, The Affiliated Jiangdu People's Hospital of Yangzhou University, Yangzhou, China
- ²¹ Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital,

Nanjing, China

Introduction

Stage I diffuse large B-cell lymphoma (DLBCL) is defined as the involvement of a single lymph node or a group of adjacent nodes, or the presence of isolated extranodal lesions without nodal involvement. Generally, the prognosis of stage I DLBCL is excellent with 5-year overall survival (OS) over 90%. However, differences in disease characteristics and prognosis between elderly and younger patients with stage I DLBCL were not clear.

Methods

In this study, we conducted a retrospective data collection from 255 newly diagnosed patients with stage I DLBCL who were above 60 years old. The data was collected from 19 medical centers of of Jiangsu Cooperative Lymphoma Group (JCLG) located in Jiangsu Province, China. To enroll, patients had to undergo staging using either positron emission tomogra-phy/computed tomography (PET/CT) or contrast-enhanced CT scans of the chest, abdomen, and pelvis (C/A/P CT) with contrast, as well as bone marrow examination.

Results

The clinical characteristics of the 255 patients are presented in Table 1. The median age at presentation was 69 years, with a range of 61 to 92 years old. Among the 255 patients, 65.9% had at least one coexistent disease. A high Charlson Comorbidity Index (CCI), defined as \geq 2, was found in 10.1% of patients. 63.9% had extranodal disease. The most common sites of

ONLINE PUBLICATION ONLY

Session 627

extranodal involvement were the stomach (37.4%), intestine (19.0%), testes (11%), breast (7.4%), skin/soft tissue (5.5%), and sinus/nose (5.5%). According to the Hans algorithm, the non-GCB subtype accounted for 63.7% of patients and did not show a significant difference between the nodal and extranodal groups. None of the patients were diagnosed with double-hit lymphoma. Additionally, EBER was found to be positive in 3.7% of patients (5/134).

The treatment approaches are outlined in Table 1. A total of 84.5% patients received the R-CHOP regimen as their primary treatment. The median number of R-CHOP courses administered was 6. Among the 204 patients with treatment evaluation records, 183 (89.7%) achieved complete remission (CR).

With a median follow-up time of 30 months, 32 patients died during the follow-up period. Among them, 18 died from causes unrelated to lymphoma at a median age of 73 years. The 3-year progression-free survival (PFS) rate was 81.5% and the 3-year OS rate was 85.6%. In the univariate analysis, age \geq 75 years (HR 3.30, P < 0.001) and CCI \geq 2 (HR 2.92, P = 0.002) were significantly associated with worse PFS; age \geq 75 years (HR 3.29, P = 0.001), CCI \geq 2 (HR 2.57, P = 0.022) and non-GCB subtype (HR 1.79, P = 0.018) were significantly associated with worse OS. In multivariate analysis, age \geq 75 years (HR 2.32, P = 0.001) and CCI \geq 2 (HR 2.32, P = 0.02) remained independent risk indicators for worse PFS; age \geq 75 years (HR 2.57, P = 0.015) and non-GCB subtype (HR 1.74, P = 0.025) were independent risk indicators for worse OS. None of the prognostic models including IPI, NCCN-IPI or stage-modified International Prognostic Index (sm-IPI) demonstrated statistical significance. However, by incorporating age \geq 75 and CCI \geq 2 into the sm-IPI, we could be able to provide a more accurate prediction of the prognosis for elderly patients with stage I DLBCL (Figure 1).

Relapse occurred in 20 patients at a median time of 9 months. 91.7% (11/12) of patients with early relapse (defined as PFS less than 24 months) experienced recurrence in the same anatomical site as the primary disease. In contrast, only 25% (2/8) of patients with late relapse exhibited relapse in the initial site.

Conclusion

To the best of our knowledge, this is the largest retrospective study conducted specifically on stage I DLBCL in the Asian population during the rituximab era. Our findings suggest that elderly patients with stage I DLBCL have a higher non-lymphoma-related mortality rate and a higher likelihood of relapse in the same anatomical site for early relapses compared to late relapses. Integrating age \geq 75 and CCI score into the sm-IPI will help to better assess prognosis.

Disclosures No relevant conflicts of interest to declare.

ONLINE PUBLICATION ONLY

Table 1. Patients' characteristics at diagnosis

	All		Extranodal		Nodal	
	No. of assessable pts.	No. of pts	No. of assessable pts.	No. of pts	No. of assessable pts.	No. of pts
Age	255		163		92	
61-75 years		189 (74.1%)		119 (73.0%)		70 (76.1%)
≥75 years		66 (25.9%)		44 (27.0%)		22 (23.9%)
Sex	255		163			
Male		129 (51.2%)		85 (52.1%)		45 (48.9%)
Female		123 (48.8%)		78 (47.9%)		47 (51.1%)
ECOG≥2	246	30 (12.2%)	155	21 (13.5%)	91	9 (9.9%)
Bulky disease	133	8 (6.0%)	76	5 (6.6%)	57	3 (5.3%)
B symptoms	255	24 (9.4%)	163	14 (8.6%)	92	10 (10.9%)
Elevated LDH	252	32 (12.7%)	161	15 (9.3%)	91	17 (18.7%)
CCI≥2	255	26 (10.1%)	163	17 (10.4%)	92	9 (9.8%)
000	223		142		81	
GCB		81 (36.3%)		53 (37.3%)		28 (34.6%)
non-GCB		142 (63.7%)		89 (62.7%)		53 (65.4%)
Treatment	251		159		92	
R-CHOP		212 (84.5%)		132 (83.0%)		80 (87.0%)
R-GemOx		11 (4.4%)		8 (5.0%)		3 (3.3%)
R-other chemo		6 (2.4%)		5 (3.1%)		1 (1.1%)
R-based chemo-free		8 (3.2%)		5 (3.1%)		3 (3.3%)
CHOP		11 (4.4%)		7 (4.4%)		4 (4.3%)
Others		3 (1.2%)		2 (1.3%)		1 (1.1%)
IPI	244		154		90	
1		190 (77.9%)		123 (80%)		67 (74.4%)
2		47 (19.3%)		27 (17.5%)		20 (22.2%)
3		7 (2.9%)		4 (2.6%)		3 (3.3%)
NCCN-IPI	244		154		90	
2-3		196 (80.3%)		116 (75.3%)		80 (88.9%)
4-5		46 (18.9%)		36 (23.4%)		10 (11.1%)
6		2 (0.8%)		2 (1.3%)		0
SM-IPI	244		154		90	
0-1		190 (77.9%)		123 (79.9%)		67 (74.4%)
2-4		54 (22.1%)		31 (20.1%)		23 (25.6%)

Figure 1. Patients' characteristics at diagnosis

Figure 1

https://doi.org/10.1182/blood-2023-181373